第255章 物理学之声学 中(2 / 2)

加入书签

声全息和声成像是无损检测方法的重要发展。将声信号变成电信号,而电信号可经过电子计算机的存储和处理,用声全息或声成像给出的较多的信息充分反应被检对象的情况,这就大大优于一般的超声检测方法。固体位错上的声发射则是另一个无损检测方法的基础。

声波在固体和液体中的非线性特性可通过媒质中声速的微小变化来研究,应用声波的非线性特性可以实现和研究声与声的相互作用,它还用于高分辨率的参量声呐(见非线性声学)中。用热脉冲产生的超声频率可达到1012hz以上,为凝聚态物理开辟了新的研究领域。(未完待续)

射线声学

或称几何声学,它与几何光学相似。主要是研究波长非常小(与空间或物体尺度比较)时,能量沿直线的传播,即忽略衍射现象,只考虑声线的反射、折射等问题。这是在许多情况下都很有效的方法。例如在研究室内反射面、在固体中作无损检测以及在液体中探测等时,都用声线概念。

统计声学

主要研究波长非常小(与空间或物体比较),在某一频率范围内简正振动方式很多,频率分布很密时。忽略相位关系,只考虑各简正方式的能量相加关系的问题。赛宾公式就可用统计声学方法推导。统计声学方法不限于在关闭或半关闭空间中使用。在声波传输中。统计能量技术解决很多问题,就是一例。

分支学科次声学、超声学、电声学、大气声学、音乐声学、语言声学、建筑声学、生理声学、生物声学、水声学、物理学、力学、热学、光学、电磁学、核物理学、固体物理学。

应用

科研应用

利用对声速和声衰减测量研究物质特性已应用于很广的范围。测出在空气中。实际的吸收系数比19世纪g.g.斯托克斯和g.r.基尔霍夫根据粘性和热传导推出的经典理论值大得多,在液体中甚至大几千倍、几万倍。这个事实导致了人们对弛豫过程的研究,这在对液体以及它们结构的研究中起了很大作用。对于固体同样工作已形成从低频到起声频固体内耗的研究,并对诸如固体结构和晶体缺陷等方面的研究都有很大贡献。

表面波、声全息、声成像、非线性声学、热脉冲、声发射、超声显微镜、次声等以物质特性研究为基础的研究领域都有很大发展。

瑞利时代就已经知道的表面波,现已用到微波系统小型化发展中。在压电材料(如石英)上镀收发电极,或在绝缘材料(如玻璃)上镀压电薄膜都可以作成表面波器件。声表面波的速度只有电磁波的十万分之几,相同频率下波长短得多,所以表面波器件的特点是小,在信号存储上和信号滤波上都优于电学元件,可在电路小型化中起很大作用。

↑返回顶部↑

书页/目录

网游竞技相关阅读: